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Abstract. We have performed molecular dynamics (MD) simulations along a low-temperature
isotherm for a system of strongly dipolar elongated molecules. The model molecules are found
to associate to form well defined chains; this association is induced by the dipolar interaction.
The order parameters, the polarization and the average number of molecules in a chain have
been calculated for a range of densities.

It is only recently that systems of strongly interacting dipolar spheres have been investigated
in some detail by means of computer simulations. It has been shown that in the absence
of long-range positional order the strong spatial–orientational coupling intrinsic to dipolar
forces can lead to interesting new phase behaviour. The molecular dynamics (MD)
calculations of Wei and Patey [1–3] for the model of soft spheres with electric point dipoles
embedded at their centres represent the first contribution which shows that the dipolar
interactionalone is capable of bringing about the formation of an orientationally ordered
phase. Moreover these authors showed that this phase is a ferroelectric liquid crystal,
becoming a stable ferroelectric solid at high density.

The Monte Carlo (MC) simulations of Weiset al [4] for a system of strongly interacting
dipolar hard spheres have revealed that dipolar hard spheres can also form an orientationally
ordered ferroelectric fluid and solid phases. In subsequent papers, Levesque and Weis [5,
6] extended their previous MC calculations to lower densities and temperatures. The most
interesting finding was the formation of well defined chains with near contact of the hard
spheres and head-to-tail alignment of the dipole moments.

The systems of spheres with point dipoles are highly idealized ones. The question
arises of whether these intriguing new phases—induced by the dipolar interaction alone
and reported so far only for point dipole spheres (soft or hard)—may also be expected for
somewhat less idealized, more complex, intentionally more realistic systems. One would
like to consider the very general case of an ensemble of non-spherical particles with a
certain distribution{qk} (

∑
k qk = 0; k = 1, 2, . . .) of effective electric chargesqk spread

out over the volume of each particle. The dipole moment of such a particle is determined
by a distribution of electric charges (not point dipoles). Moreover, for some distributions
of effective charges, higher electric multipoles may appear as well.

In the following we take a preliminary step in this direction. We test the effect of
removing three major limiting assumptions appearing in the previous calculations [1–6],
i.e. (a) spherical symmetry of the particles, (b) a one-site interaction potential only, and
(c) a point dipole moment embedded at the centre of each sphere.
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To this end we have performed MD simulations for the simple model which consists of
elongated molecules (ellipsoids of revolution) with three embedded interaction sites XY2

placed on the major axis of the molecule. The sites Y–X–Y are responsible for the non-
dipolar intermolecular interaction of atomic groups (united atoms or pseudoatoms) located
inside the molecule. The three-site intermolecular potential generates translatory as well as
rotatory dynamics of our molecules even in the absence of dipole–dipole interaction. The
potentialUij of a pair of different moleculesi andj is therefore a sum of two contributions
Uij = USS

ij + UC
ij . The first termUSS

ij is the sum of the assumed site–site soft-sphere
potentialsUiαjβ :

USS
iαjβ = 4εαβ(σαβ/riαjβ)

12 (1)

whereriαjβ is the distance between the siteα of moleculei and the siteβ of moleculej ,
εαβ andσαβ are the soft-sphere potential parameters, andα, β = X,Y.

Figure 1. A sketch of the molecular model. The relevant labels, explained in the text, are
shown.

To date, the only ferroelectric liquid crystals which have been observed are chiral
smectic-C phase ones. The presence of polar groups located beside the rod-like central
cores, with strong components perpendicular to the central axis, is usual in smectic-phase-
forming systems. The model that we are describing is primitive; it is not our aim at
this stage to model a fully realistic molecule which could possibly form the ferroelectric
liquid crystal phase. Nevertheless, guided by this experimental observation, we equip our
elongated molecule with two effective charges{q,−q} located on opposite sides of the
central pseudoatom X, perpendicular to the XY2 axis and with the distancedq between
them. In other words, the molecule has the dipole momentµ (µ = |µ| = qdq) located
centrally and perpendicular to the symmetry axis of the molecule (see figure 1).

The second componentUC
ij of the pair potentialUij is therefore the sum of the Coulomb

interactions between the electric charges{qk} of moleculesi andj . The total potential energy
U of the sample ofN particles is given byU =∑N

i,j=1(U
LJ
ij + UC

ij ) (j > i).
Our MD simulations were performed on a canonicalNVT -ensemble (V and T are

the volume and the absolute temperature of the sample, respectively) of 500 particles in a
cubic box with periodic boundary conditions, employing the Gaussian isokinetic equation
of motion as described by Kusalik [7]. The orientational coordinates of the particles were
expressed in terms of quaternion parameters and the equations of motion were integrated
using the Beeman algorithm [8]. The long-range Coulomb interactions were handled using
the Ewald summation technique in three dimensions [8] with the standard assumption that
the dielectric permittivityε′ of the surrounding continuum is infinite (ε′ → ∞) [2, 5, 6, 8,
9]. Extensive MD studies of the convergence of the Ewald sum have been carried out by
Kusalik [7] and we have followed his method of optimization of Ewald’s summation. In
the present calculations, we used the real(Rc) and reciprocal(kc) cut-off radii Rc = L/2,
kc = 30.7/L, whereL is the length of the cubic simulation cell, and the Ewald sum
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parameterα∗ = 6.4 (as defined in [7]). Tests with other values of the parameterα∗ were
also carried out. We have verified that our results were not sensitive to the particular value
chosen forα∗, unless it is in the range 5.0 < α∗ < 7.0. Typically, runs were begun with
randomly oriented and fcc-placed particles and were equilibrated for about 50 000 time
steps. Averages were then collected for at least another 100 000 time steps. It is convenient
to characterize a dipolar fluid by specifying the reduced densityρ∗ = Nl3/V = ρl3, the
reduced temperatureT ∗ = kBT l3/µ2, the reduced dipole momentµ∗ = √1/T ∗, the reduced
time step1t∗ = 1t/(ml5/µ2)1/2, and the reduced components of the moment of inertia
with respect to the major molecular axisI ∗‖ = I‖/(ml2), I ∗⊥ = I⊥/(ml2), wherekB is the
Boltzmann constant,ρ = N/V is the number density,m is the mass of the molecule, andl
is the Y–Y distance. Here the applied values of the model parameters are:1t∗ = 0.0072,
µ∗ = 3.5 (µ = 4 D), I ∗‖ = 0.011, I ∗⊥ = 0.055, anddq/ l = 0.3. The reduced parameters
of the soft-sphere potential are:ε∗XX = εXXl3/µ2 = 0.063, ε∗YY = εYY l3/µ2 = 0.013, and
σ ∗XX = σ ∗XX/l = 0.874,σ ∗YY = σ ∗YY / l = 0.584 with the Lorentz–Berthelot mixing rules for
the cross (XY) interaction parameters. Simulations were performed along a low-temperature
isotherm withT ∗ = 0.0816 for a range of densities,ρ∗ = 0.05–0.4.

Figure 2. The mean square displace-
ment 〈|r(t) − r(0)|2〉 as a function
of the reduced timet∗ for a range of
densitiesρ∗.

The possible existence of an ordered phase (nematic, ferroelectric,. . . ) [10] was
monitored by calculating the usual equilibrium first- and second-rank orientational order
parameters,〈P1〉 and 〈P2〉, respectively. For ordinary non-ferroelectric nematics,〈P2〉 6= 0
and 〈P1〉 = 0. For ferroelectric nematics, both〈P1〉 and 〈P2〉 must be non-zero. In the
case of an isotropic liquid both parameters,〈P1〉 and 〈P2〉, should be zero, if the system
is infinite. The instantaneous second-rank order parameterP2 was taken to be the largest
eigenvalue of the ordering matrix with the elements given by

Qηξ = N−1
N∑
i=1

2−1(3niηniξ − δηξ ) (2)

whereniη is theη-component of the unit vectorni = µi/µi. The corresponding eigenvector
is the instantaneous directord, and the instantaneous first-rank order parameterP1 is defined
by

P1 = N−1
N∑
i=1

ni · d. (3)
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The equilibrium order parameters are the ensemble averages ofP1 andP2. The presence of
ferroelectric order can be detected by calculating the average polarization per particle〈P 〉
defined by

〈P 〉 = N−1
N∑
i=1

ni · n (4)

wheren is a unit vector in the direction of the total instantaneous momentµ =∑N
i=1µi .

Of course〈P 〉 will be near zero for an unpolarized system and will approach 1 if the fluid
becomes ferroelectric.

Figure 3. The central-core–central-core
(X–X) radial distribution functiong(r)
for a range of reduced densitiesρ∗.

Table 1. The equilibrium thermodynamic properties of an ensemble of strongly dipolar
(µ∗ = 3.5) linear molecules at the reduced temperatureT ∗ = 0.0816 as a function of the density
ρ∗: the order parameters〈P1〉 and〈P2〉, the polarization〈P 〉, the average number of molecules in
a chainNchain and the reduced potential energy−〈U〉l3/Nµ2. The maximal standard deviations
for the order parameters and polarization are:1P1 = 0.03,1P2 = 0.05,1P = 0.02.

ρ∗ 〈P1〉 〈P2〉 〈P 〉 Nchain −〈U〉l3/Nµ2

0.050 0.13 0.16 0.14 266 4.73
0.100 0.12 0.13 0.14 83 4.73
0.125 0.10 0.17 0.12 115 4.73
0.150 0.09 0.13 0.09 83 4.73
0.175 0.10 0.16 0.16 83 4.73
0.200 0.12 0.18 0.15 125 4.73
0.300 0.11 0.15 0.16 100 4.72
0.400 0.10 0.13 0.18 148 4.70

We have also calculated the mean square displacement〈|ri (t)− ri (0)|2〉 whereri (t) is
the position of moleculei at time t . For fluids this quantity will continually increase with
time, usually varying linearly at long times.

The mean square displacements are plotted in figure 2 and it is apparent that the system
is a fluid for the densities studied,ρ∗ 6 0.4. The central-core–central-core (X–X) pair
distribution functionsg(r) are shown in figure 3 for a range of densities. Note that the
positionrmax of the first maximum ofg(r) is shifted towards the lower value (rmax< σXX)
indicating the strong influence of attractive Coulombic forces.
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Figure 4. A three-dimensional graph (snapshot) of an instantaneous configuration of 500 dipolar
particles(µ∗ = 3.5) at T ∗ = 0.0816, ρ∗ = 0.05. Arrows indicate the vectors of the dipole
momentsµi (i = 1, . . . ,500). The molecular axis of theith particle (not shown in the graph
to allow better visualization of the chainlike structure) is perpendicular toµi .

Figure 5. A three-dimensional graph (snapshot) of an instantaneous configuration of 500 dipolar
particles(µ∗ = 3.5) at T ∗ = 0.0816, ρ∗ = 0.3.

The average number of molecules in a chainNchain has been calculated using an
energetically based criterion, as described in [6]: two molecules were considered to be



10100 A Kachel and Z Gburski

bound if their potential energy was lower than a predetermined valueUc = 0.7U0, where
U0 = −2µ2/r3

max.
The results for the order parameters〈P1〉, 〈P2〉, the polarization〈P 〉, the average number

of molecules in a chainNchain and the reduced potential energy−〈U〉l3/Nµ2 for the different
thermodynamic states are summarized in table 1. The very small but non-zero values of
〈P1〉 and〈P2〉 may result from the finite size of the simulated system and do not indicate the
very weak ferroelectric nematic phase. When these results are supplemented with snapshots
of instantaneous configurations, we observe very interesting behaviour of our system.

The striking finding is the formation of well defined molecular clusters which, by
visual inspection, can be readily identified as being chainlike. Figures 4 and 5 show the
instantaneous configurations of the system for a chosen density. Monomers are absent. It
is important to note that a chain configuration evolves considerably during the MD run. A
specific chain does not maintain a constant length, but can grow, break, and reform. Even
rings or closed loops may appear (see figure 5). Each particular molecule is caught by
some chain, and its individual mobility is substantially restricted. A typical chain consists
of about hundred molecules (Nchain ' 80–140); this implies a mesoscopic scale of spatial
order in our system.

In summary, our simulations have shown that at least for certain boundary conditions
an ensemble of elongated molecules with perpendicular dipoles can form spatially ordered,
chainlike structures. That the tendency to form chains—with the dipole–dipole interaction
‘turned on’—can persist even in the presence of a quite complicated rotational dynamics
stimulated by a three-site potential is an interesting finding. The fact that this can be
accomplished with dipolar forces alone is perhaps mainly of theoretical interest, since in
real liquid crystals other anisotropic interactions (short ranged) often dominate the dipolar
contribution. However, we have shown that a spatially ordered phase generated by dipolar
interaction alone can develop in systems that are more complex than those investigated
earlier [1–6].
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